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New Runge–Kutta methods for method of lines solution of systems of ordinary
differential equations arising from discretizations of spatial derivatives in hyperbolic
equations, by Chebyshev or modified Chebyshev methods, are introduced. These
Runge–Kutta methods optimize the time step necessary for stable solutions, while
holding dispersion and dissipation fixed. It is found that maximizing dispersion
minimizes dissipation, and vice versa. Optimal methods with respect to large stability
intervals on the imaginary axis and with respect to the eigenvalue spectra of the
underlying pseudospectral discretizations are developed. In the latter case, stability
regions are optimized to include the outliers of the spatial operators. Performance
on a model problem in computational aeroacoustics is evaluated. The optimized
schemes have two more function evaluations per timestep than the standard fourth
order Runge–Kutta method, but allow timesteps up to 1.7 times larger. Moreover,
dissipation and dispersion are reduced.c© 1999 Academic Press

Key Words:Runge–Kutta; dissipation; dispersion; pseudospectral Chebyshev;
hyperbolic equations; computational aeroacoustics.

1. INTRODUCTION

There has been much recent work on numerical methods for accurate and efficient com-
putation of wave propagation [5–9, 16–21]. In [13], we analyze the effectiveness of the
Chebyshev pseudospectral method (CPS) and a modified Chebyshev pseudospectral method
(MPS) for the spatial discretization of the one-dimensional wave equationut = ux. If CPS
is used in space, then

ut = Du (1)
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with

Di j = d

dx
Tj (x)|x=xi ,

whereTj (x) andxi are the Chebyshev polynomials and points, respectively [3]. The MPS
method amounts to a preconditioning of the differential operator,D, by a diagonal matrix
A, with entries dependent on the underlying spatial transformation. Here, and in [13], we
consider the transformation introduced by Kosloff and Tal-Ezer [10] for which the entries
of A are given by

Aii = sin−1(α)
√

1− (αxi )2

α
,

and for which we make the choiceα = cos(1/N) in order to maximally damp the entries
in D, see [13]. In both cases the matricesD andAD are dense. It is, therefore, imperative
to design a solver in time which allows large timesteps while maintaining both stability and
accuracy. Here we consider the design of optimal Runge–Kutta methods for the integration
of systems with system matrixD or AD. Equivalently, we require Runge–Kutta methods
for which the stability regions enclose the scaled spectrum of the underlying system matrix.
Thus, in Section 2, we review properties of the spectrum and pseudospectrum of the CPS
and MPS derivative matrices,D andAD, respectively.

The methods in [6–9, 16, 17, 20, 21] are optimal in the sense that they require a small num-
ber of points per wavelength for minimal dispersion and dissipation. CPS and MPS require
less than five points per wavelength for phase and amplitude errorsO(10−2) [8, 13]. Thus,
here we aim to improve the efficiency of the RK timestepping scheme, without introducing
dissipation and dispersion, i.e., while maintaining the accuracy of the spatial operator. In
Section 3 we show how to hold dispersion and dissipation fixed, while maximizing the
stability region. In the process, we give the dissipation relations and show that maximizing
the order of dispersion minimizes the order of dissipation, and vice versa, i.e., minimal
dissipation and dispersion compete.

In Section 4 we derive two new RK methods of order 4 that allow time steps approximately
1.7 times larger than the usual fourth-order RK method. Finally, in Section 5 we evaluate
the new RK methods in conjunction with CPS or MPS in space, for a benchmark problem
in computational aeroacoustics [5].

2. STABILITY

The approach taken by Chiu and Kopriva in [4], for the determination of an optimal
RK method, assumes that the eigenvalues of the CPS derivative operator dictate the size
of the time step. When the system matrix is nonnormal, i.e.,DT D 6= DDT, eigenvalue
stability is not necessarily valid. Then the pseudospectrum determines the stability [14]:
The pseudospectrum of a matrix D is the set of eigenvalues of the matrix D+ E, with
||E||<ε, i.e. all λ 6= 0 such that

(D + E)x = λx.

It is well known, moreover, that the first order spatial derivative operator determined
by the CPS method is non-normal [14]; thus the pseudospectrum is much larger than the
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FIG. 1. Eigenvalues of CPS matrix (×) and contours of its pseudo eigenvalues (−), for perturbations
10−6, 10−5, . . . ,10−1. Outer contour is 10−1, andN= 32.

spectrum. This is illustrated in Fig. 1 where we plot the spectrum and pseudospectrum for
ε= 10−6, . . . ,10−1. The largest contour refers to the boundary of the pseudospectrum when
ε = 10−1.

Figure 2 shows the same information for the MPS operator. The single contour reflects
the pertubation 10−1; all other perturbations do not influence the spectrum. Note in each
case that the outliers are insensitive to the perturbations.

Chiu and Kopriva were specifically interested to determine a method with fast conver-
gence to steady state, rather than one that maintains high accuracy. Hence, in the devel-
opment of their method they assumed large intervals of stability along the negative real
axis and optimized to minimize dispersion. Consequently, their scheme is automatically
dissipative and is not appropriate for accurate wave propagation for which the strength of
the signal is important.

FIG. 2. Eigenvalues of MPS matrix (×). Single contour is pertubation 10−1; other pertubations do not effect
the spectrum.N= 32.
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We observe, from Fig. 1, that an optimal RK scheme for CPS would require both large
negative real stability and a large interval of stability along the imaginary axis. These
appear to be competing demands because, as we shall verify, a large interval of negative
real stability introduces substantial dissipation, and is therefore not in general desirable.
For the MPS method, however, we see that only large intervals along the imaginary axis
are desirable. Hence we should be more successful in designing appropriate methods for
the MPS operators. In Section 4 we describe an approach for finding the optimal schemes.

3. DISPERSION AND DISSIPATION IN RUNGE–KUTTA METHODS

Consider the solution of the initial value problem

ut = f (t, u) (2)

by thes-stage Runge–Kutta method

un+1 = un + h
s∑

i=1

bi ki (3)

ki = f

(
tn + ci h, un + h

s∑
l=1

ail kl

)
(4)

ci =
s∑

j=1

ai j , (5)

wherebi , ci ,ai j are determined by the method. These coefficients are usually written in the
Butcher array:

c1

c2
...

cs

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1s

a21 a22 . . . a2s
...

...

as1 as2 . . . ass

b1 b2 . . . bs

or

c | A
| bT .

If A is strictly lower triangular, the RK method is explicit. IfA is lower triangular the RK
method is semi-implicit, and ifA is not lower triangular the RK method is implicit [11].

We follow the approach of Van Der Houwen and Sommeijer in [18] but emphasize the
study of dissipation errors, rather than dispersion, or phase-lag errors. We consider the usual
linear test equation,

ut = λu, λ = x + yi, (6)

for which the exact solution is

u(t + h) = eh(x+yi)u(t). (7)
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Using the notation of Albrecht [1], the RK solution has the form

un+1 = (1+ hλbTe+ · · · + (hλ)sbT As−1e)un, (8)

with e= (1, . . . ,1) ∈ Rs. If β j = bT Aj−1e, then

un+1 =
(
1+ hλβ1+ · · · (hλ)sβs

)
un (9)

= (Fs + iGs)un, (10)

with

Fs = 1+ hx+ β2h2(x2− y2)+ β3h3(x3− 3xy2)+ β4h4(x4− 6x2y2+ y4)

+β5h5(x5− 10x3y2+ 5xy4)+ · · · + βsh
s(x2+ y2)s/2 cossθ,

Gs = hy+ 2β2h2xy+ β3h3(3x2y− y3)+ β4h4(4x3y− 4xy3)

+β5h5(5x4y− 10x2y3+ y5)+ · · · + βsh
s(x2+ y2)s/2 sinsθ,

θ = tan−1(y/x).

DEFINITION 1 (Van Der Houwen and Sommeijer [18]). The RK method defined by (8)
is dissipative of orderp if

exh− |Fs + iGs| = O(hp+1)

and dispersive of orderq if

hy− tan−1(Gs/Fs) = O(hq+1).

When we expand all terms in Definition 1 up to orderp= 5, we see that apth order
method is dissipative and dispersive of orderp. In [18], Van Der Houwen and Sommeijer
consider the case for whichx= 0, i.e., the exact solution is non-dissipative, and show that
an orderp method has an order of dispersion of at least 2b(p+ 1)/2c.

In a 4th order method withx= 0, Fs andGs simplify to F4(hy)= 1−β2(hy)2+β4(hy)4

andG4(hy)= hy−β3(hy)3. The dissipation error is

DS(hy) = 1− |F4(hy)+ iG4(hy)|, (11)

and the dispersion error is

DP(hy) = hy− tan−1(G4(hy)/F4(hy)). (12)

In Figs. 3 and 4 we plot the dissipation and dispersion errors versushy for a 2nd (β2 =
1/2, β3 = 0, β4 = 0), 3rd (β2 = 1/2, β3 = 1/6, β4 = 0), and 4th (β2 = 1/2, β3 =
1/6, β4 = 1/24) order method. The optimized method is described in Section 4.1. The
dissipation error drops significantly from a 3rd order to a 4th order RK, i.e., fromO(10−5)
to O(10−8). Similarly, the dispersion error drops significantly from a 2rd order to a 3th
order RK, i.e. fromO(10−4) to O(10−7).

Van Der Houwen and Sommeijer determine the dispersion relations in [18]. In Table I we
provide the corresponding dissipation relations. A detailed derivation of these dissipation
relations and the expansions of the terms in Definition 1 is given in [13].
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FIG. 3. Dissipation error (11) in a 2nd order, a 3rd order, a 4th order, and an optimized RK method.

FIG. 4. Dispersion error (12) in a 2nd order, a 3rd order, a 4th order, and an optimized RK method.
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TABLE I

Dissipation Relations

Order Order of dissipation

1, 2 3 β2 = 1/2
5 β3 − β4 = 1/8
7 2β5 − 2β6 + β2

3 − β4 = 0
9 −2β3β5 − 2β7 + β2

4 + 2β8 + β6 = 0
11 β2

5 + 2β3β7 − 2β10+ 2β9 − 2β4β6 − β8 = 0
13 −2β5β7 + 2β12+ 2β4β8 − 2β11+ β2

6 − 2β3β9 + β10 = 0

3, 4 5 β2 = 1/2, β3 = 1/6, β4 = 1/24
7 β5 − β6 = 1/144
9 β5 − 6β7 + 1/192+ 6β8 + 3β6 = 0

11 12β2
5 + 4β7 − 24β10+ 24β9− β6 − 12β8 = 0

13 −24β5β7 + 2β12+ β8 − 24β11+ 12β2
6 − 4β9 + 12β10 = 0

Given the dispersion and dissipation relations, we can now determine the Runge–Kutta
methods with a given number of stages which maximize the orders of dispersion and
dissipation. The relations in Table I are simplified if we take

β j = 0, for j > s.

Thus, the coefficients that give the maximal order of dissipation can be determined by
solving the resulting system. The number of stages, the maximum order of dissipation, and
the requiredβ j , j ≤ s, are given in Table II. The resulting order of dispersion is also listed.

TABLE II

Maximum Order of Dissipation

No. of Order of Order of Order of
stages accuracy dissipation dispersionβ2 β3 β4 β5 β6

2 2 3 2
1

2

3 2 5 2
1

2

1

8

4 2 7 2
1

2

1

2
± 1

4

√
2

3

8
± 1

4

√
2

5 2 9 2
1

2

1

4

1

8

1

32

5 2 9 2
1

2

−1+√5

8

√
5− 2

8

−11+ 5
√

5

64

5 4 7 4
1

2

1

6

1

24

1

144

6 2 11 2
1

2

3

16

1

16

1

64

1

512

6 2 11 2
1

2

3+√3

8

2+√3

8

3
√

3+ 5

16(−1+√3)

19+ 11
√

3

64(−1+√3)

6 2 11 2
1

2

3−√3

8

2−√3

8

3
√

3− 5

16(1+√3)

−19+ 11
√

3

64(1+√3)

6 4 8 4
1

2

1

6

1

24

1

192

−1

576
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TABLE III

Maximum Order of Dispersion

No. of Order of Order of Order of
stages accuracy dispersion dissipation β2 β3 β4 β5 β6

2 1 4 1 1/3
2 2 4 3 1/2
3 1 6 1 2/5 1/15
3 3 4 3 1/2 1/6
4 1 8 1 3/7 2/21 1/105
4 3 6 3 1/2 1/6 1/30
4 4 6 5 1/2 1/6 1/24
5 1 10 1 4/9 1/9 1/63 1/945
5 3 8 3 1/2 1/6 4/105 1/210
5 5 6 5 1/2 1/6 1/24 1/120
6 1 12 1 5/11 4/33 2/99 1/495 1/10395
6 3 10 3 1/2 1/6 −4/21 −47/210 −8/105
6 5 9 5 1/2 1/6 1/24 1/120 1/840

We see that a 6-stage method can have order of dissipation 11, but the resulting order of
dispersion is 2.

The order of dispersion is maximized in a similar manner, using the dispersion relations
provided in [18]. In Table III we summarize the number of stages, the maximum order of
dispersion, the requiredβ j , and the resulting orders of dissipation. We see that it is possible
for a 6-stage method to have order of dispersion 12, but the resulting order of dissipation
is 1. We conclude that the requirements of maximal order of dissipation and dispersion
compete, a fact that the authors have not seen stated elsewhere.

4. OPTIMAL STABILITY REGIONS

The orders of dissipation and dispersion may be controlled by constraining the values of
β j , according to the dispersion and dissipation relations. It is thus possible to constrain the
coefficients ofβ j to provide certain orders of dissipation and dispersion, while maintaining
a limited number of degrees of freedom which can be used to optimize the scheme for the
underlying spatial discretization. Note, however, that the stability regions of maximal order
schemes,p ≤ 4, cannot be maximized, because the number of stages is the same as the
highest order, and there are no remaining degrees of freedom. If the orderp of the method is
greater than 4, maximal order schemes constrain the coefficientsβ1, . . . , βr wherer < p.
Hence, the free parameters areβ j , p < j < s. For example, in [12], Lawson finds a value
of β6 that maximizes the real part of the stability region for thep = 5 method. His method
allows time steps twice as large as those for a fourth order method.

There is a tradeoff between the efficiency of the method and the maximal accuracy. As
the order of accuracy increases, the number of function evaluations increases, and, hence,
the cost increases. This is particularly significant when the underlying spatial operators are
dense. We therefore choose a compromise and work with methods of 3 to 6 stages. Since
higher accuracy leads to larger stability intervals, we only drop the maximum order of
accuracy by one, in order to introduce free parameters. We require the following definition
in the description of the algorithm.



412 MEAD AND RENAUT

DEFINITION 2. The region of absolute stability is the set of allhλ ∈ C such that

|r (hλ)| ≤ 1, wherer (z) =
s∑

i=0

βi z
i , β0 = 1. (13)

Moreover the boundary of the stability region is given by the set of allhλ ∈ C such that

|r (hλ)| = 1. (14)

4.1. Extended Stability along the Imaginary Axis

We noted in Section 2 that the pseudo-spectrum for the MPS operator extends along the
imaginary axis without extension along the negative real axis. It is therefore appropriate to
determine schemes with extended intervals of stability along the imaginary axis. Conse-
quently, schemes designed with respect to large intervals of stability along the imaginary
axis are useful for any differential operator with similar properties.

ALGORITHM I.

1. Holdβ1, . . . , β j fixed for the desired order of dissipation and dispersion.
2. Maximize f (β j+1, . . . , βs) where f is defined as follows:

2.1 Solver (z) = ei θl for a set ofθl , 0≤ θl < 2π to provide rootszk(θl ) = xkl + iykl ,
k = 1, 2, . . . , s (see [2]).

2.2 f (β j+1, . . . , βs) = maxk,l {|ykl | such thatxkl ≈ 0}.
EXAMPLE.

1. Lets= 2, j = 1 andβ1 = 1.
2.1 From (13)r (z) = 1+ z+ β2z2, and assumezk = xk + iyk for k = 1, 2. The set of

points{xk(θl ), yk(θl )} with θl = 0, . . . ,2π that solve

1+ (xk + iyk)+ β2(xk + iyk) = ei θl (15)

define the stability boundary.
2.2 Consider first that (15) is solved numerically forzk(θl ). From the set ofzk(θl ) with

xk(θl ) ≈ 0,

f (β2)=max
kl
|yk(θl )|.

Alternatively, solve (15) exactly forzk(θl ). Letxk(θl ) = 0 for allk, l ; thenyk = ±
√

2β2− 1/
β2, and

f (β2) =
√

2β2− 1/β2.

In this case the maximum occurs whenβ2 = 1.

Algorithm I was solved in Matlab, the function “roots” was used to solver (z) = ei θl for z,
and “fmins” was used to maximuzef (β j+1, . . . , βs). The methods found are near optimal
and results are shown in Table V. Vichnevetsky proves in [19] that the largest segment of the
imaginary axis which is contained in the stability region cannot exceed [−i (s−1), i (s−1)].
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TABLE IV

Stability Intervals of Existing Methods

Order of Stability interval near imag. axis Scaled interval
Stages (accuracy, diss., disp.) [−δ, δ] [−δ/s, δ/s]

3 (3, 3, 4) [−1.7871, 1.7871] [−.5957, .5957]
4 (4, 5, 6) [−2.8333, 2.8333] [−.7083, .7083]
5 (4, 7, 4) [−3.4642, 3.4642] [−.6928, .6928] β5 = 1/144
6 (5, 5, 6) [−4.1256, 4.1256] [−.6876, .6876] β6 = 1/1280

Kinnmark and Gray [7] state the methods which obtain these upper bounds. These methods,
however, are only second order accurate. We note that with Algorithm I for 3 stages we
obtain their optimal method,β1= 1,β2= 1/2,β3= 1/4, as expected.

By comparing Table IV with Table V, we see that a six-stage fourth-order method almost
doubles the imaginary stability interval of the four-stage fourth-order method (RK4). Thus,
the time step for the optimized six-stage fourth-order method (RKM) can be almost twice
that for RK4. RKM, however, requires two more function evaluations per step.

If RK4 requires a time step of sizeh4 for stable solutions, there are 4T/h4 function
evaluations at the final timeT . The stability intervals given in Tables IV and V indicate
that RKM requires a time step of size 1.73h4, and thus 3.47T/h4 function evaluations at
time T . This results in an effective step size increase of 15.26%, which is significant for
long time integrations.

The ability to almost double the time step with RKM was confirmed by plotting the
stability region, and the scaled pseudo-spectra of the MPS derivative matrix; see Fig. 5. In
the time integration, the spatial approximation is scaled by the time steph, so that it lies
within the stability boundary.

In Table VI we give the largest time-step for RK4 and RKM with increasingN. These
results confirm the approximate improvement of 1.7 to 1.8 for RKM over RK4.

4.2. Extended Stability along the Imaginary Axis and the Negative Real Axis

From Section 2 we observe that optimal RK methods to be used in conjunction with
the CPS operator must extend both along the negative real axis and along the imaginary
axis. In this case optimal methods were determined by applying Algorithm I, but with the

TABLE V

Stability Intervals of Methods Found from Algorithm I

Order of Stability interval near imag. axis Scaled interval
Stages (accuracy, diss., disp.) [−δ, δ] [−δ/s, δ/s]

3 (2, 3, 2) [−2.0696, 2.0696] [−.6899, .6899] β3 = .25
4 (3, 3, 4) [−2.8521, 2.8521] [−.7130, .7130] β4 = .03812
5 (3, 3, 4) [−3.9356, 3.9356] [−.7871, .7871] β4 = .03255

β5 = .00633
6 (4, 5, 4) [−4.8984, 4.8984] [−.8164, .8164] β5 = .00556

β6 = .00093
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FIG. 5. Eigenvalues (×) and pseudo spectra (−) of MPS matrix,N= 32. Stability regions for RKM (outer .),
and RK4 (inner .).

additional constraints that the outlier eigenvalues forN= 32, which are insensitive with
regard to perturbations, lie inside the stability region.

ALGORITHM II. This is the same as Algorithm I, but do not requirexkl ≈ 0, i.e., replace
2.2 by

2.2′ f (β j+1, . . . , βs) = maxk j {|ykj |}.
The six-stage fourth-order method (RKC) defined by

β6 = 6.42853125e− 04 β5 = .005676975

was found from Algorithm II. It has a stability region which reaches out to include the
outlying eigenvalues of the CPS derivative matrix; see Fig. 6.

TABLE VI

The Largest Allowable Timesteps Which Ensure That the Pseudospectra of MPS

Lie within the Stability Region of RK4 or RKM

h
% increase

N RK4 RKM Ratio in efficiency

16 0.1440 0.2470 1.72 14.35
32 0.0620 0.1110 1.80 19.35
64 0.0300 0.0520 1.73 15.56

100 0.0180 0.0325 1.81 20.37
128 0.0143 0.0251 1.76 17.02
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FIG. 6. Stability boundary of RKC (outer .) and RK4 (inner .).

Again, the ability to increase the time step was confirmed by plotting the scaled pseudo-
spectrum of the CPS matrix with the regions of stability of RKC and RK4 in Fig. 7.
The scaled pseudo spectrum lies entirely within the stability regions of RKC or RK4, for
ε <10−2. Table VII shows that the increased time step with RKC, as compared to RK4, is
largely independent ofN.

The values of the RKM and RKC coefficients are not unique, but the methods must be
4th order, i.e., from [1],

bTe= 1 bTc = 1

2
bTc2 = 1

3

bTc3 = 1

4
bT Ac= 1

6
bT Ac2 = 1

12

bT A2c = 1

24

1

2
bT Dc2 = bT D Ac,

D= diag(ci ). In addition, both RKM and RKC have the condition that

β6 = k1, β5 = k2, (16)

for thek1, k2 found in the optimization process. This nonlinear system of 10 equations and

TABLE VII

The Largest Allowable Time Steps Which Ensure the Pseudospectra of CPS Lie

within the Stability Region of RK4 or RKC

h
% increase

N RK4 RKC Ratio in efficiency

16 0.1240 0.1980 1.60 6.45
32 0.0310 0.0520 1.68 11.83
64 0.0079 0.0132 1.67 11.39

100 0.0032 0.0055 1.72 14.58
128 0.0020 0.0034 1.70 13.33
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FIG. 7. Eigenvalues (×) and pseudo spectra (−) of CPS matrix,N= 32. Stability regions for RKC (outer .),
and RK4 (inner .).

21 unknowns can be reduced to 10 equations and 10 unknowns if we assume the method is
of the form

0 0
c2 c2

c3 0 c3

c4 0 0 c4

c5 0 0 0 c5

c6 0 0 0 0 c6

b1 b2 b3 b4 0 b6

.

The values of the RK coefficients are given by

b1 = −0.15108370762927 b2 = 0.75384683913851 b3 = −0.36016595357907

b4 = 0.52696773139913 b5 = 0 b6 = 0.23043509067071

c2 = 0.16791846623918 c3 = 0.48298439719700 c4 = 0.70546072965982

c5 = 0.09295870406537 c6 = 0.76210081248836,
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and

b1 = −1.11863930033618 b2 = 2.50614037113582 b3 = −2.22307558659639

b4 = 0.99978067105009 b5 = 0 b6 = 0.83579384474665

c2 = 0.11323867464627 c3 = 0.38673801369281 c4 = 0.62314978336040

c5 = 0.05095678842127 c6 = 0.54193120548949.

for RKM and RKC, respectively.

5. SOLUTION OF SPHERICAL WAVE PROBLEM

To evaluate the effectiveness of the optimized RK methods a benchmark problem in
computational aeroacoustics [5] was solved:

∂u

∂t
+ ∂u

∂r
+ u

r
= 0 5≤ r ≤ 315, t > 0

u(r, 0) = 0 5≤ r ≤ 315

u(5, t) = sin(π t/3) 0< t < 300.

The analytic solution is

u(r, t) =
{

0, r > t + 5

5[sin(π(t − r + 5)/3)]/r, r ≤ t + 5.
(17)

Figure 8 illustrates the analytic solution on the entire domain. Errors in the numerical
solution will be seen on the right side of the graph, where the wave dies out. Thus, as in
[5], the numerical results are plotted on the domain 250≤ r ≤ 330.

Figures 9 and 10 illustrate the solutions forN= 270, for which there are five points per
wavelength; details are provided in [13]. The time steps are chosen so that the absolute
error measured in the maximum norm isO(10−3). In Fig. 9, the graph of the solution found
with RK4 is identical (up to order 10−3) to the graph of the solution found with RKC.
Correspondingly in Fig. 10, the RK4 solution is identical to the RKM solution.

Execution times, provided in Table VIII, are for a Fortran code running on a dedicated HP
9000/735 system. We conclude that RKM provides the optimal algorithm while maintaining
accuracy equivalent to that of the CPS operator.

TABLE VIII

Summary of Methods and Their Execution Times

Spatial approx. Temporal approx. Step size Error Time

CPS RK4 0.0004 3e− 3 32 h 6 min 39 s
CPS RKC 0.00067 3e− 3 28 h 32 min 5 s
MPS RK4 0.1 2e− 3 8 min 14 s
MPS RKM 0.2 2e− 3 6 min 2 s
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FIG. 8. True solution of benchmark problem att = 300.

FIG. 9. Solution of benchmark problem with CPS: the true solution (—) and the computed solution (◦). RK4
time≈ 32 h (left), RKC time≈ 28 h (right).

FIG. 10. Solution of benchmark problem with MPS: the true solution (—) and the computed solution (◦).
RK4 time≈ 8 min (left); RKM time≈ 6 min (right).
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